Faculty: Faculty of Engineering

Department(s): All faculty (CIV, CE, IE, EE, IM)

Number of Students: 72

Course: Physics I

Weekly hours: Theory: 2 Exercises: 2

ECTS Credits: 6

Semester: Fall

Lecture Schedules:

Tuesday: 11:15 - 14:15 (CIV, CE, IE, EE); 11:15 - 15:15 (IM)

Classroom: B-204 (11:15 - 14:15); B-004 (14:30 - 15:15)

Lecturer: Dr. Hiqmet Kamberaj

Room Number: —-

Phone Number of the lecturer:

E-mail address of the lecturer: km.ude.ubi|jarebmakh#km.ude.ubi|jarebmakh

**Course Objectives:**

In this course, we aim to give an introduction to classical physics. The students will be able to learn about the kinematics of systems, Newton’s Laws, to describe the dynamics of systems, work and energy, conservation of energy, mechanics of ﬂuids, and the wave motion.

**Learning Outcomes:**

Skill outcomes | Necessary ( + ) Not Necessary ( –) |
---|---|

Written communication skills | + |

Oral communication skills | + |

Computer skills | - |

Working in laboratory | + |

Working team | + |

Preparing projects | + |

Knowledge of foreign language (English) | + |

Scientific and professional literature analysis | + |

Problem solving skills | + |

Management skills | + |

Presentation skills | + |

**Course Textbooks:**

- H. Kamberaj, Foundations of General Physics. Mechanics, Springer-Verlag, To be submitted 2019.
- Fundamentals of Physics, Halliday, Resnick and Walker, 8th edition.

**Teaching methods:**

Teaching methods | Ideal % |
---|---|

Teaching ex cathedra (teacher as the figure of authority, standing in front of the class and lecturing) | 70 |

Interactive teaching (ask questions in class, assign and check homework, or hold class or group discussions) | 20 |

Mentor teaching (consultant-teacher who has a supervisory responsibility and supervising the students) | - |

Laboratory work | - |

Seminar work | 5 |

Field Work (enables students to examine the theories and the practical experiences of a particular discipline interact) | - |

Semester project | - |

Case Study (An in-depth exploration of a particular context) | - |

Students Team work | 5 |

**Attendance:**

- Students are obliged to attend at least 72 % out of 12 weeks of lectures, exercises, and other activities.
- The attendance rule for failed overlapping courses is 36 % out of 12 weeks of lectures, exercises, and other activities.
- The attendance rule for course from the upper semester is 57% out of 12 weeks of lectures, exercises, and other activities.
- Students are not obliged to attend the course if the course is double repeated. However, they need to register the course.

**Exams (Mid-Term Exam, Final Exam, Make-up Exam):**

There are two exams, the Mid-Term and Final Exam, at the middle and at the end of the semester, respectively. The students, who do not earn minimum 50 credit points from the Mid-Term, Final Exam including Homework Assignments, have to take the Make-Up Exam, which counts only for Final Exam credit points. The terms of the exams are defined by the Academic Calendar announced on the University web site.

**Passing Score:**

The maximum number of credit points is collected during the semester, as follows: Mid-term Exam = 40 Credit Points (minimum requirement is 25 % (midterm exam + activity) to enter Final Exam), Final Exam (minimum requirement is 25 % to pass) = 40 Credit Points. Homeworks, quizzes, specific assignments and term papers = 20 Credit Points (minimum requirement is 5 credit points to enter Final Exam). Total=100.

**Study Plan** —- International Balkan University - Academic Calendar

~Week | Lecture | ~ Topics |
---|---|---|

1 | 1 | Introduction to the philosophy of this course. Motion in one dimension. |

2 | 2 | Motion in one dimension (continue). |

3 | 3 | Motion in two dimensions. |

4 | 4 | The laws of motion. |

5 | 5 | Applications of Newton's Laws. |

6 | 6 | Mid term review. |

7 | - | Mid Term Exam Week |

8 | 7 | Work. Kinetic energy and Potential energy. |

9 | 8 | Linear momentum and collisions. |

10 | 9 | Rotation of a rigid object. |

11 | 10 | Rolling motion. Angular momentum. Static equilibrium. |

12 | 11 | Oscillatory motion. |

13 | 12 | Final exam review. |

14 | - | Winter break. |

15 | - | Final exam week. |

16 | - | Preparatory week. |

17 | - | Make up exam week. |

**Student workload:**

For calculating the Total Student Work Load we multiply the course ECTS credits with standard figure 30. (ECTS Credit: 6) x 30 = 180 hours.

Activities | Hours |
---|---|

Lecture hours for 12 weeks: | 24 |

Laboratory and class exercises for 12 weeks: | 24 |

Student Mentoring for 12 weeks: | - |

Consultation for 12 weeks: | 12 |

Exam preparations and exam hours (Midterm, final, Makeups): | 30 |

Individual reading work for 12 weeks (Reading assignments/expectations for reading and comprehension is 5 pages per hour. Example: If a book 300 pages, total Individual reading work for 12weeks 300:5 = 60 hours. | 50 |

Homework and work practice for 12 weeks: | 40 |

Preparation of diploma work, for 12 weeks: | - |